THE SLEEPER EFFECT IN PERSUASION

The Sleeper Effect in Persuasion: A Meta-Analytic Review

Persuasive messages are often accompanied by information that induces suspicions of invalidity. For instance, recipients of communications about a political candidate may discount a message coming from a representative of the opponent party because they do not perceive the source of the message as credible (e.g., Larissy & Tinkham, 1999). Because the source of the political message serves as a discounting cue and temporarily decreases the impact of the message, recipients may not be persuaded by the advocacy immediately after they receive the communication. Over time, however, recipients of an otherwise influential message may recall the message but not the noncredible source and thus become more persuaded by the message at that time than they were immediately following the communication. The term "sleeper effect" was used to denote such a delayed increase in persuasion observed when the discounting cue (e.g., a political message serving as a discounting cue and temporarily decreases the impact of the message but not the noncredible source) becomes unavailable or "dissociated" from the communication in the memory of the message recipients (Hovland, Lumsdaine, & Sheffield, 1949).…

Sample of Studies

We retrieved reports related to the sleeper effect that were available by March 2003 by means of multiple procedures. First, we searched computerized databases, including PsycINFO (1887–2003), Dissertation Abstracts International (1861–2003), ERIC (1967–2003), and the Social-Science-Citation-Index (1956–2003), using the keywords "persuasion and decay." Because researchers often use the terms opinion and belief, instead of attitude, we conducted searches using these substitute terms as well.

Second, … [section continues].

Selection Criteria

We used the following criteria to select studies for inclusion in the meta-analysis.

1. We only included studies that involved the presentation of a communication containing persuasive arguments. Thus, we excluded studies in which the participants played a role or were asked to make a speech that contradicted their opinions. We also excluded developmental studies involving delayed effects of an early event (e.g., child abuse), which sometimes are also referred to as sleeper effects.…

Moderators

For descriptive purposes, we recorded (a) the year and (b) source (i.e., journal article, unpublished dissertations and theses, or other unpublished document) of each report as well as (c) the sample composition (i.e., high school students, university students, or other) and (d) the country in which the study was conducted.

We also coded each experiment in terms of … [section continues].

Studies were coded independently by the first author and another graduate student.

was satisfactory (Orwin, 1994). We resolved disagreements by discussion and consultation with colleagues. Characteristics of the individual studies included in this review are presented in Table 1. The studies often contained several independent datasets such as different messages and different experiments. The characteristics that distinguish different datasets within a report appear on the second column of the table.

Dependent Measures and Computation of Effect Sizes

We calculated effect sizes for (a) persuasion and (b) recall-recognition of the message content. Calculations were based on the data described in the primary reports as well as available responses of the authors to requests of further information… [section continues].

Analyses of Effect Sizes

To benefit from the strengths of both models, we chose to aggregate the effect sizes and to conduct analyses using both models. This allowed us to consider both the fixed-effects and random-effects approach. The data analysis included a description of the experiments we summarized, an overview of the average effect sizes, and moderator analyses, and tests of mediation.

Overview of the Average Effect Sizes

A thorough understanding of the sleeper effect requires examining (a) the between-condition differences at each time point as well as (b) the within-condition changes that take place over time. The data analysis on the effects of time went by (fixed-effects, $d_{+} = –0.21$; random-effects, $d_{+} = –0.23$). In contrast to the decay in persuasion for recipients of acceptance cues, there was a slight increase in persuasion for recipients of discounting cues over time ($d_{+} = 0.08$). It is important to note that change in discounting-cue conditions significantly differed from change in acceptance-cue conditions, $(\text{fixed-effects}; B = –0.29, \text{SE} = 0.04), Q_B(1) = 58.15, p < .0001; Q_B(123) = 193.82, p < .0001… [section continues].

Ruling out a nonpersisting boomerang effect. To determine whether or not a delayed increase in persuasion represents an absolute sleeper effect, one needs to rule out a nonpersisting boomerang effect, which takes place when a message initially backfires but later loses this reverse effect (see Panel A of Figure 1),… [section continues].

Average sleeper effect. Relevant statistics corresponding to average changes in persuasion from the immediate to the delayed posttest appear in Table 4, organized by the different conditions we considered (i.e., acceptance-cue, discounting-cue, no-message control, and message-only control). In Table 4, positive effect sizes indicate increases in persuasion over time, negative effect sizes indicate decay in persuasion, and zero effects denote stability in persuasion. Confidence intervals that do not include zero indicate significant changes over time. The first row of Table 4 shows that recipients of acceptance cues agreed with the message less as time went by (fixed-effects, $d_{+} = –0.21$; random-effects, $d_{+} = –0.23$). In contrast to the decay in persuasion for recipients of acceptance cues, there was a slight increase in persuasion for recipients of discounting cues over time ($d_{+} = 0.08$). It is important to note that change in discounting-cue conditions significantly differed from change in acceptance-cue conditions, $(\text{fixed-effects}; B = –0.29, \text{SE} = 0.04), Q_B(1) = 58.15, p < .0001; Q_B(123) = 193.82, p < .0001… [section continues].

Summary and variability of the overall effect. The overall analyses identified a relative sleeper effect in persuasion, but no absolute sleeper effect. The latter was not surprising, because the sleeper effect was expected to emerge under specific conditions… [section continues].

Sample Meta-Analysis (continued)

To benefit from the strengths of both models, we chose to aggregate the effect sizes and to conduct analyses using both models. This allowed us to consider both the fixed-effects and random-effects approach. The data analysis included a description of the experiments we summarized, an overview of the average effect sizes, and moderator analyses, and tests of mediation.

Overview of the Average Effect Sizes

A thorough understanding of the sleeper effect requires examining (a) the between-condition differences at each time point as well as (b) the within-condition changes that take place over time. The data analysis on the effects of time went by (fixed-effects, $d_{+} = –0.21$; random-effects, $d_{+} = –0.23$). In contrast to the decay in persuasion for recipients of acceptance cues, there was a slight increase in persuasion for recipients of discounting cues over time ($d_{+} = 0.08$). It is important to note that change in discounting-cue conditions significantly differed from change in acceptance-cue conditions, $(\text{fixed-effects}; B = –0.29, \text{SE} = 0.04), Q_B(1) = 58.15, p < .0001; Q_B(123) = 193.82, p < .0001… [section continues].

Ruling out a nonpersisting boomerang effect. To determine whether or not a delayed increase in persuasion represents an absolute sleeper effect, one needs to rule out a nonpersisting boomerang effect, which takes place when a message initially backfires but later loses this reverse effect (see Panel A of Figure 1),… [section continues].

Average sleeper effect. Relevant statistics corresponding to average changes in persuasion from the immediate to the delayed posttest appear in Table 4, organized by the different conditions we considered (i.e., acceptance-cue, discounting-cue, no-message control, and message-only control). In Table 4, positive effect sizes indicate increases in persuasion over time, negative effect sizes indicate decay in persuasion, and zero effects denote stability in persuasion. Confidence intervals that do not include zero indicate significant changes over time. The first row of Table 4 shows that recipients of acceptance cues agreed with the message less as time went by (fixed-effects, $d_{+} = –0.21$; random-effects, $d_{+} = –0.23$). In contrast to the decay in persuasion for recipients of acceptance cues, there was a slight increase in persuasion for recipients of discounting cues over time ($d_{+} = 0.08$). It is important to note that change in discounting-cue conditions significantly differed from change in acceptance-cue conditions, $(\text{fixed-effects}; B = –0.29, \text{SE} = 0.04), Q_B(1) = 58.15, p < .0001; Q_B(123) = 193.82, p < .0001… [section continues].

Summary and variability of the overall effect. The overall analyses identified a relative sleeper effect in persuasion, but no absolute sleeper effect. The latter was not surprising, because the sleeper effect was expected to emerge under specific conditions… [section continues].
Moderator Analyses

Although overall effects have descriptive value, the variability in the change observed in discounting-cue conditions makes it unlikely that the same effect was present under all conditions. Therefore, we tested the hypotheses that the sleeper effect would be more likely (e.g., more consistent with the absolute pattern in Panel B1 of Figure 1) when...[section continues].